

RP-003-1015003

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

Mathematics: MATH-07(A)

(Boolean Algebra and Complex Analysis-1) (New Course)

> Faculty Code: 003 Subject Code: 1015003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Figure to the right indicate full marks of the questions.
- 1 (A) Answer the following questions in short:
 - (1) Define: Partial order relation.
 - (2) If $R = \{(1,1), (1,2), (1,3)\}$ is a relation on $A = \{1,2,3\}$ then find R^{-1} .
 - (3) If (S_6, D) is a lattice then cub $\{2,3\} =$ _____.
 - (4) For the Poset $(S_{30}, D), \dot{2} =$ ______.
 - (B) Attempt any one out of two:
 - (1) Consider the relation $R = \{(i, j) / | i j | = 2\}$ on $\{1,2,3,4,5,6\}$ IS R transitive ?
 - (2) Define: Meet and join.
 - (C) Attempt any one out of two:
 - (1) Prove that $R = \{x, y\} / x, y \in z, x y$ is divided by 5} is an equivalence relation.
 - (2) If $(L, *, \oplus, 0, 1)$ is a bounded lattice then prove that
 - (i) a * 1 = a (ii) $a \oplus 1 = 1$
 - (D) Attempt any **one** out of **two**:
 - (1) Prove that every chain is a distributive lattice.

1

(2) Prove that direct product of two lattice is also a lattice.

4

2

3

5

2	(A)	 Answer the following questions in short: (1) Define Atom in Boolean algebra. (2) Sum of all minterms of n variables is (3) For Boolean algebra a⊕1 = (4) Define sub Boolean algebra. 	4
	(B)	Attempt any one out of two:	2
		 (1) Find the atoms of boolean algebra (S₃₀,*,⊕,',0,1). (2) Define: Boolean Homomorphism. 	
	(C)	 Attempt any one out of two: (1) If a and b are distinct atoms of Boolean algebra (B,*,⊕,',0,1) then prove that a*b=0. (2) Write all the minterms of three variables. 	3
	(D)	Attempt any one out of two : (1) State and prove D' Morgan's law for the Boolean algebra.	5
		(2) If $(B, *, \oplus, ', 0, 1)$ is a Boolean algebra then prove	
		that any $x_1, x_2 \in B$ (1) $A(x_1 * x_2) = A(x_1) \cap A(x_2)$	
		(2) $A(x_1 \oplus x_2) = A(x_1) \cup A(x_2)$.	
3	(A)	Answer the following questions in short: Define analytic function. State Laplace equation in Cartesian form. 	4
		 (3) If f(z) = u(r,θ) + iv(r,θ) is analytic function then f'(z) = (4) State Cauchy-Riemann condition in cartesian form. 	
	(B)	Attempt any one out of two : (1) Show that $u=\log r$ is harmonic.	2
		(2) If $f(z) = e^x(\cos y - i\sin y)$ then prove that $f'(z) = -f(Z)$.	
	(C)	Attempt any one out of two:	3
		(1) If $w = x^2 + ayx + by^2 + i(cx^2 + dxy + y^2)$ is analytic then find value of a, b, c, d.	

its conjugate harmonic function.

(2) Show that $\frac{y}{x^2 + y^2}$ is harmonic function and find

(D) Attempt any one out of two:

(1) Prove that the analytic function of constant modulus is also constant in its domain.

(2) Prove that
$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

Satisfied Cauchy-Riemann conditions at origin however f(z) is not analytic function at origin.

4 (A) Answer the following questions in short:

4

(1) Define: closed curve.

- (3) If c : |z| = 1 then $\int_{c} \frac{z}{2z 1} dz = \underline{\qquad}$.
- (4) If c : |z| = 1 then $\int_{c} \frac{dz}{z 2} = \underline{\qquad}$.
- (B) Attempt any one out of two:

2

- (1) Find $\int_{0}^{2+i} (\overline{z})^2 dz.$
- (2) Find $\int_C \frac{dz}{z^2+4}$ where c:|z-i|=2.
- (C) Attempt any one out of two:

3

(1) Prove that $\left| \int_{c} \frac{1}{z^4} dz \right| \le 4\sqrt{2}$, where c is the line

sigment joining z = i to z = 1.

- (2) State and prove Cauchy's fundamental theorem.
- (D) Attempt any one out of two:

5

(1) In usual notation prove that

$$\left| \int_{a}^{b} f(z)dz \right| \leq \int_{a}^{b} |f(z)| dz.$$

- (2) Find $\int_{c} (3z+1)dz$, where c is a square joining points z=0, z=1, z=i and z=1+i.
- 5 (A) Answer the following questions in short:
 4 (1) State the Cauchy-integral formula for first
 - (1) State the Cauchy-integral formula for first derivative.
 - (2) State Liouville's theorem.
 - (3) If c : |z| = 1 then $\int_{c} \frac{\cosh z}{z^4} dz =$ _____.
 - (4) If c : |z| = 1 then $\int_{c}^{\infty} \frac{e^{z}}{z^{3}} dz = \underline{\qquad}$
 - (B) Attempt any **one** out of **two**:
 - (1) Evaluate $\int_{c} \frac{5z^2 7z + 3}{(z 1)^2} dz$ where c : |z| = 2.
 - (2) State maximum modulus principle.
 - (C) Attempt any one out of two:(1) State and prove Cauchy inequality.
 - (2) Evaluate $\int_{c} \frac{\sin^{6} z}{\left(z \frac{\pi}{6}\right)^{3}} dz \text{ where } c : |z| = 1.$
 - (D) Attempt any one out of two:
 - (1) State and prove fundamental theorem of Algebra.
 - (2) Let c be any simple closed contour described in the

Positive sense in the z-plane and $g(w) = \int_{c}^{c} \frac{z^3 + 2z}{(z - w)^3} dz$

show that $g(w) = 6\pi i w$ when w is inside c and what the value of g(w) when w is outside c.

2

3